Saturday, 7 October 2017

Prognose Mit Exponentiell Gleitender Durchschnitt


Eine Zeitreihe ist eine Folge von Beobachtungen einer periodischen Zufallsvariablen. Beispiele dafür sind die monatliche Nachfrage nach einem Produkt, die jährliche Neueinreichung in einer Abteilung der Universität und die täglichen Flüsse in einem Fluss. Zeitreihen sind wichtig für Operations Research, weil sie oft die Treiber von Entscheidungsmodellen sind. Ein Inventarmodell erfordert Schätzungen zukünftiger Anforderungen, ein Kursterminierungs - und Personalmodell für eine Universitätsabteilung erfordert Schätzungen des zukünftigen Zuflusses von Schülern und ein Modell für die Bereitstellung von Warnungen für die Bevölkerung in einem Flusseinzugsgebiet erfordert Schätzungen der Flussflüsse für die unmittelbare Zukunft. Die Zeitreihenanalyse liefert Werkzeuge zur Auswahl eines Modells, das die Zeitreihen beschreibt und das Modell zur Prognose zukünftiger Ereignisse verwendet. Das Modellieren der Zeitreihen ist ein statistisches Problem, da beobachtete Daten in Berechnungsverfahren verwendet werden, um die Koeffizienten eines vermeintlichen Modells abzuschätzen. Modelle gehen davon aus, dass Beobachtungen zufällig über einen zugrunde liegenden Mittelwert, der eine Funktion der Zeit ist, variieren. Auf diesen Seiten beschränken wir die Aufmerksamkeit auf die Verwendung von historischen Zeitreihendaten, um ein zeitabhängiges Modell abzuschätzen. Die Methoden eignen sich zur automatischen, kurzfristigen Prognose häufig verwendeter Informationen, bei denen sich die zugrunde liegenden Ursachen der zeitlichen Variation nicht rechtzeitig ändern. In der Praxis werden die von diesen Methoden abgeleiteten Prognosen anschließend von menschlichen Analytikern modifiziert, die Informationen enthalten, die aus den historischen Daten nicht verfügbar sind. Unser Hauptziel in diesem Abschnitt ist es, die Gleichungen für die vier Prognosemethoden zu präsentieren, die im Prognose-Add-In verwendet werden: gleitender Durchschnitt, exponentielle Glättung, Regression und doppelte exponentielle Glättung. Diese werden als Glättungsmethoden bezeichnet. Zu den nicht berücksichtigten Methoden gehören qualitative Prognose, multiple Regression und autoregressive Methoden (ARIMA). Die, die an der umfangreicheren Abdeckung interessiert sind, sollten die Prognoseprinzipien Aufstellungsort besuchen oder ein der ausgezeichneten Bücher auf dem Thema lesen. Wir verwendeten das Buch Prognose. Von Makridakis, Wheelwright und McGee, John Wiley amp Sons, 1983. Um die Excel-Beispiele-Arbeitsmappe zu verwenden, muss das Prognose-Add-In installiert sein. Wählen Sie den Relink-Befehl, um die Links zum Add-In zu erstellen. Diese Seite beschreibt die Modelle für die einfache Prognose und die Notation für die Analyse verwendet. Diese einfachste Prognosemethode ist die gleitende Durchschnittsprognose. Die Methode ist einfach Mittelwerte der letzten m Beobachtungen. Es ist nützlich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Diese Methode berücksichtigt die gesamte Vergangenheit in ihrer Prognose, aber wiegt jüngste Erfahrungen stärker als weniger jüngste. Die Berechnungen sind einfach, da nur die Schätzung der vorherigen Periode und die aktuellen Daten die neue Schätzung bestimmen. Das Verfahren eignet sich für Zeitreihen mit einem sich langsam ändernden Mittelwert. Die Methode des gleitenden Mittels reagiert nicht gut auf eine Zeitreihe, die mit der Zeit zunimmt oder abnimmt. Hierbei handelt es sich um einen linearen Trendbegriff im Modell. Das Regressionsverfahren nähert sich dem Modell an, indem es eine lineare Gleichung entwickelt, die die kleinsten Quadrate für die letzten m Beobachtungen bietet. Forecasting durch Smoothing Techniques Diese Seite ist ein Teil der JavaScript E-labs Lernobjekte für die Entscheidungsfindung. Andere JavaScript in dieser Serie sind unter verschiedenen Bereichen von Anwendungen im Abschnitt MENU auf dieser Seite kategorisiert. Eine Zeitreihe ist eine Folge von Beobachtungen, die zeitlich geordnet sind. Inhärent in der Sammlung von Daten über die Zeit genommen ist eine Form der zufälligen Variation. Es gibt Methoden zur Verringerung der Annullierung der Wirkung aufgrund zufälliger Variation. Weit verbreitete Techniken sind Glättung. Diese Techniken, wenn richtig angewandt, zeigt deutlicher die zugrunde liegenden Trends. Geben Sie die Zeitreihe Row-weise in der Reihenfolge beginnend mit der linken oberen Ecke und den Parametern ein, und klicken Sie dann auf die Schaltfläche Berechnen, um eine Prognose für eine Periode zu erhalten. Blank Boxen sind nicht in den Berechnungen, sondern Nullen enthalten. Wenn Sie Ihre Daten eingeben, um von Zelle zu Zelle in der Daten-Matrix zu bewegen, verwenden Sie die Tabulatortaste nicht Pfeil oder geben Sie die Tasten ein. Merkmale der Zeitreihen, die durch die Untersuchung seines Graphen aufgezeigt werden könnten. Mit den prognostizierten Werten und dem Residualverhalten, Condition Prognose Modellierung. Moving Averages: Gleitende Durchschnitte zählen zu den beliebtesten Techniken für die Vorverarbeitung von Zeitreihen. Sie werden verwendet, um zufälliges weißes Rauschen aus den Daten zu filtern, um die Zeitreihe glatter zu machen oder sogar bestimmte in der Zeitreihe enthaltene Informationskomponenten zu betonen. Exponentialglättung: Dies ist ein sehr populäres Schema, um eine geglättete Zeitreihe zu erzeugen. Während in den gleitenden Durchschnitten die bisherigen Beobachtungen gleich gewichtet werden, erhält die exponentielle Glättung exponentiell abnehmende Gewichte, wenn die Beobachtung älter wird. Mit anderen Worten, die jüngsten Beobachtungen sind relativ mehr Gewicht in der Prognose gegeben als die älteren Beobachtungen. Double Exponential Smoothing ist besser im Umgang mit Trends. Triple Exponential Smoothing ist besser im Umgang mit Parabeltrends. Ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstanten a. Entspricht in etwa einem einfachen gleitenden Durchschnitt der Länge (d. h. Periode) n, wobei a und n durch a 2 (n1) OR n (2 - a) a verknüpft sind. So würde beispielsweise ein exponentiell gewichteter gleitender Durchschnitt mit einer Glättungskonstante gleich 0,1 etwa einem 19 Tage gleitenden Durchschnitt entsprechen. Und ein 40 Tage einfacher gleitender Durchschnitt würde etwa einem exponentiell gewichteten gleitenden Durchschnitt mit einer Glättungskonstanten gleich 0,04878 entsprechen. Holts Lineare Exponentialglättung: Angenommen, die Zeitreihe ist nicht saisonal, sondern zeigt Trend. Holts-Methode schätzt sowohl das aktuelle Niveau als auch den aktuellen Trend. Beachten Sie, dass der einfache gleitende Durchschnitt ein Spezialfall der exponentiellen Glättung ist, indem die Periode des gleitenden Mittelwertes auf den ganzzahligen Teil von (2-Alpha) Alpha gesetzt wird. Für die meisten Geschäftsdaten ist ein Alpha-Parameter kleiner als 0,40 oft effektiv. Man kann jedoch eine Gittersuche des Parameterraums mit 0,1 bis 0,9 mit Inkrementen von 0,1 durchführen. Dann hat das beste Alpha den kleinsten mittleren Absolutfehler (MA Error). Wie man mehrere Glättungsmethoden miteinander vergleicht: Obwohl es numerische Indikatoren für die Beurteilung der Genauigkeit der Prognosetechnik gibt, besteht der am weitesten verbreitete Ansatz darin, einen visuellen Vergleich mehrerer Prognosen zu verwenden, um deren Genauigkeit zu bewerten und unter den verschiedenen Prognosemethoden zu wählen. Bei diesem Ansatz muss man auf demselben Graphen die ursprünglichen Werte einer Zeitreihenvariablen und die vorhergesagten Werte aus verschiedenen Prognoseverfahren aufzeichnen und damit einen visuellen Vergleich erleichtern. Sie können die Vergangenheitsvorhersage von Smoothing Techniques JavaScript verwenden, um die letzten Prognosewerte basierend auf Glättungstechniken zu erhalten, die nur einen einzigen Parameter verwenden. Holt - und Winters-Methoden zwei bzw. drei Parameter, daher ist es keine leichte Aufgabe, die optimalen oder sogar nahezu optimalen Werte durch Versuch und Fehler für die Parameter auszuwählen. Die einzelne exponentielle Glättung betont die kurzreichweite Perspektive, die sie den Pegel auf die letzte Beobachtung setzt und basiert auf der Bedingung, dass es keinen Trend gibt. Die lineare Regression, die auf eine Linie der kleinsten Quadrate zu den historischen Daten (oder transformierten historischen Daten) passt, repräsentiert die lange Reichweite, die auf dem Grundtrend konditioniert ist. Holts lineare exponentielle Glättung erfasst Informationen über die jüngsten Trend. Die Parameter im Holts-Modell sind Ebenenparameter, die verringert werden sollten, wenn die Menge der Datenvariation groß ist, und der Trends-Parameter sollte erhöht werden, wenn die jüngste Trendrichtung durch das Kausale beeinflusst wird. Kurzfristige Prognose: Beachten Sie, dass jeder JavaScript auf dieser Seite eine einstufige Prognose zur Verfügung stellt. Um eine zweistufige Prognose zu erhalten. Fügen Sie einfach den prognostizierten Wert an das Ende der Zeitreihendaten und klicken Sie dann auf die Schaltfläche Berechnen. Sie können diesen Vorgang einige Male wiederholen, um die benötigten kurzfristigen Prognosen zu erhalten. In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert. Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein Zufallsrauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 zugeführt wird. Die Ergebnisse der Simulation werden auf die nächste Ganzzahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, weil das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.

No comments:

Post a Comment